Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Crit Care ; 27(1): 226, 2023 06 08.
Article in English | MEDLINE | ID: covidwho-20232670

ABSTRACT

PURPOSE: A hallmark of acute respiratory distress syndrome (ARDS) is hypoxaemic respiratory failure due to pulmonary vascular hyperpermeability. The tyrosine kinase inhibitor imatinib reversed pulmonary capillary leak in preclinical studies and improved clinical outcomes in hospitalized COVID-19 patients. We investigated the effect of intravenous (IV) imatinib on pulmonary edema in COVID-19 ARDS. METHODS: This was a multicenter, randomized, double-blind, placebo-controlled trial. Invasively ventilated patients with moderate-to-severe COVID-19 ARDS were randomized to 200 mg IV imatinib or placebo twice daily for a maximum of seven days. The primary outcome was the change in extravascular lung water index (∆EVLWi) between days 1 and 4. Secondary outcomes included safety, duration of invasive ventilation, ventilator-free days (VFD) and 28-day mortality. Posthoc analyses were performed in previously identified biological subphenotypes. RESULTS: 66 patients were randomized to imatinib (n = 33) or placebo (n = 33). There was no difference in ∆EVLWi between the groups (0.19 ml/kg, 95% CI - 3.16 to 2.77, p = 0.89). Imatinib treatment did not affect duration of invasive ventilation (p = 0.29), VFD (p = 0.29) or 28-day mortality (p = 0.79). IV imatinib was well-tolerated and appeared safe. In a subgroup of patients characterized by high IL-6, TNFR1 and SP-D levels (n = 20), imatinib significantly decreased EVLWi per treatment day (- 1.17 ml/kg, 95% CI - 1.87 to - 0.44). CONCLUSIONS: IV imatinib did not reduce pulmonary edema or improve clinical outcomes in invasively ventilated COVID-19 patients. While this trial does not support the use of imatinib in the general COVID-19 ARDS population, imatinib reduced pulmonary edema in a subgroup of patients, underscoring the potential value of predictive enrichment in ARDS trials. Trial registration NCT04794088 , registered 11 March 2021. European Clinical Trials Database (EudraCT number: 2020-005447-23).


Subject(s)
COVID-19 , Pulmonary Edema , Respiratory Distress Syndrome , Humans , COVID-19/complications , Imatinib Mesylate/adverse effects , Lung , Double-Blind Method
2.
Ther Adv Respir Dis ; 17: 17534666231162252, 2023.
Article in English | MEDLINE | ID: covidwho-2299309

ABSTRACT

Coronavirus-induced diseases have afflicted humanity for several decades. This scenario was aggravated by the emergence of the coronavirus disease 2019 (named COVID-19) in Wuhan, China, in December 2019. Since then, COVID-19 has killed millions of people worldwide, probably the most devastating pandemic since HIV/AIDS. This review aimed to bring together important updated aspects related to coronavirus-induced diseases and the enhanced vascular permeability observed mainly in the lungs of affected people. The dysregulated vascular permeability in the lungs is of fundamental importance for coronaviruses-caused morbidity and mortality. Thus, as described in this review, it is a target of new and old drugs.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Capillary Permeability , Lung , Permeability
3.
Am J Physiol Lung Cell Mol Physiol ; 2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2227725

ABSTRACT

BACKGROUND: Pulmonary edema is a central hallmark of Acute Respiratory Distress Syndrome (ARDS). Endothelial dysfunction and epithelial injury contribute to permeability but their differential contribution to pulmonary edema development remains understudied. METHODS: Plasma levels of surfactant protein-D (SP-D), soluble receptor for advanced glycation end products (sRAGE) and angiopoietin-2 (Ang-2) were measured in a prospective, multicenter cohort of invasively ventilated patients. Pulmonary edema was quantified using the radiographic assessment of lung edema (RALE) and global lung ultrasound (LUS) score. Variables were collected within 48 hours after intubation. Linear regression was used to examine the association of the biomarkers with pulmonary edema. RESULTS: In 362 patients, higher SP-D, sRAGE and Ang-2 concentrations were significantly associated with higher RALE and global LUS scores. After stratification by ARDS subgroups (pulmonary, non-pulmonary, COVID, non-COVID), the positive association of SP-D levels with pulmonary edema remained, while sRAGE and Ang-2 showed less consistent associations throughout the subgroups. In a multivariable analysis, SP-D levels were most strongly associated with pulmonary edema when combined with sRAGE (RALE score: ßSP-D = 6.79 units/log10 pg/mL, ßsRAGE = 3.84 units/log10 pg/mL, R2 = 0.23; global LUS score: ßSP-D = 3.28 units/log10 pg/mL, ßsRAGE = 2.06 units/log10 pg/mL, R2 = 0.086), while Ang-2 did not further improve the model. CONCLUSION: Biomarkers of epithelial injury and endothelial dysfunction were associated with pulmonary edema in invasively ventilated patients. SP-D and sRAGE showed the strongest association, suggesting that epithelial injury may form a final common pathway in the alveolar-capillary barrier dysfunction underlying pulmonary edema.

4.
Proc Natl Acad Sci U S A ; 120(3): e2213317120, 2023 01 17.
Article in English | MEDLINE | ID: covidwho-2186699

ABSTRACT

There is an urgent need to develop novel drugs to reduce the mortality from severe infectious diseases with the emergence of new pathogens, including Coronavirus disease 2019 (COVID-19). Although current drugs effectively suppress the proliferation of pathogens, immune cell activation, and inflammatory cytokine functions, they cannot completely reduce mortality from severe infections and sepsis. In this study, we focused on the endothelial cell-specific protein, Roundabout 4 (Robo4), which suppresses vascular permeability by stabilizing endothelial cells, and investigated whether enhanced Robo4 expression could be a novel therapeutic strategy against severe infectious diseases. Endothelial-specific overexpression of Robo4 suppresses vascular permeability and reduces mortality in lipopolysaccharide (LPS)-treated mice. Screening of small molecules that regulate Robo4 expression and subsequent analysis revealed that two competitive small mothers against decapentaplegic (SMAD) signaling pathways, activin receptor-like kinase 5 (ALK5)-SMAD2/3 and ALK1-SMAD1/5, positively and negatively regulate Robo4 expression, respectively. An ALK1 inhibitor was found to increase Robo4 expression in mouse lungs, suppress vascular permeability, prevent extravasation of melanoma cells, and decrease mortality in LPS-treated mice. The inhibitor suppressed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced endothelial barrier disruption and decreased mortality in mice infected with SARS-CoV-2. These results indicate that enhancing Robo4 expression is an efficient strategy to suppress vascular permeability and mortality in severe infectious diseases, including COVID-19, and that small molecules that upregulate Robo4 can be potential therapeutic agents against these diseases.


Subject(s)
COVID-19 , Endotoxemia , Animals , Mice , Receptors, Cell Surface/metabolism , Capillary Permeability , Endothelial Cells/metabolism , Signal Transduction , Up-Regulation , Endotoxemia/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , COVID-19/metabolism , SARS-CoV-2/metabolism
6.
Methods Mol Biol ; 2475: 339-350, 2022.
Article in English | MEDLINE | ID: covidwho-1802606

ABSTRACT

Vascular endothelial growth factor (VEGF) stimulates vascular permeability in a variety of human pathologies, such as cancer, ischemic stroke, cardiovascular disease, retinal conditions, and COVID-19-associated pulmonary edema, sepsis, acute lung injury, and acute respiratory distress syndrome. Comprehensive investigation of the molecular mechanisms of VEGF-induced vascular permeability has been hindered by the lack of in vivo models that easily facilitate genetic manipulation studies in real time. To address this need, we generated a heat-inducible VEGF transgenic zebrafish model of vascular permeability. Here, we describe how this zebrafish model can be used to monitor VEGF-induced vascular permeability through live in vivo imaging to identify genetic regulators that play key roles in vascular barrier integrity in physiological conditions and human disease processes.


Subject(s)
COVID-19 , Capillary Permeability , Animals , Capillary Permeability/physiology , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factors/metabolism , Zebrafish/genetics , Zebrafish/metabolism
7.
Front Immunol ; 13: 868679, 2022.
Article in English | MEDLINE | ID: covidwho-1785351

ABSTRACT

Coronavirus disease 2019 (COVID-19), an infectious respiratory disease propagated by a new virus known as Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), has resulted in global healthcare crises. Emerging evidence from patients with COVID-19 suggests that endothelial cell damage plays a central role in COVID-19 pathogenesis and could be a major contributor to the severity and mortality of COVID-19. Like other infectious diseases, the pathogenesis of COVID-19 is closely associated with metabolic processes. Lactate, a potential biomarker in COVID-19, has recently been shown to mediate endothelial barrier dysfunction. In this review, we provide an overview of cardiovascular injuries and metabolic alterations caused by SARS-CoV-2 infection. We also propose that lactate plays a potential role in COVID-19-driven endothelial cell injury.


Subject(s)
COVID-19 , Vascular Diseases , COVID-19/complications , Endothelial Cells/metabolism , Endothelium , Humans , Lactic Acid/metabolism , SARS-CoV-2 , Vascular Diseases/pathology
8.
EMBO Mol Med ; 14(5): e14844, 2022 05 09.
Article in English | MEDLINE | ID: covidwho-1776709

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can cause gastrointestinal (GI) symptoms that often correlate with the severity of COVID-19. Here, we explored the pathogenesis underlying the intestinal inflammation in COVID-19. Plasma VEGF level was particularly elevated in patients with GI symptoms and significantly correlated with intestinal edema and disease progression. Through an animal model mimicking intestinal inflammation upon stimulation with SARS-CoV-2 spike protein, we further revealed that VEGF was over-produced in the duodenum prior to its ascent in the circulation. Mechanistically, SARS-CoV-2 spike promoted VEGF production through activating the Ras-Raf-MEK-ERK signaling in enterocytes, but not in endothelium, and inducing permeability and inflammation. Blockage of the ERK/VEGF axis was able to rescue vascular permeability and alleviate intestinal inflammation in vivo. These findings provide a mechanistic explanation and therapeutic targets for the GI symptoms of COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Enterocytes/metabolism , Humans , Inflammation/metabolism , Spike Glycoprotein, Coronavirus , Vascular Endothelial Growth Factor A
9.
Front Med (Lausanne) ; 8: 785409, 2021.
Article in English | MEDLINE | ID: covidwho-1603084

ABSTRACT

Acute respiratory distress syndrome (ARDS) is characterized by dysregulated vascular permeability. The clinical outcomes remain poor, and the disease burden is widespread. We demonstrated that plasma 5-hydroxyindoleacetic acid (5-HIAA), a serotonin metabolite, is a pivotal severity indicator of ARDS. Serotonin is an effector of cellular contraction and a modulator of vascular permeability. Plasma 5-HIAA levels were significantly elevated in severe ARDS cases with shock status (p = 0.047) and positively correlated with SOFA (p < 0.0001) and APACHE-II score (p < 0.0001). In the longitudinal analysis, plasma 5-HIAA levels were also a strong independent predictor of mortality rate (p = 0.005). This study indicates that plasma 5-HIAA is a biomarker of ARDS severity and highlights the importance of evaluating vascular leakage levels for ARDS treatment.

10.
Biol Pharm Bull ; 44(10): 1371-1379, 2021.
Article in English | MEDLINE | ID: covidwho-1445700

ABSTRACT

The vascular permeability of the endothelium is finely controlled by vascular endothelial (VE)-cadherin-mediated endothelial cell-cell junctions. In the majority of normal adult tissues, endothelial cells in blood vessels maintain vascular permeability at a relatively low level, while in response to inflammation, they limit vascular barrier function to induce plasma leakage and extravasation of immune cells as a defense mechanism. Thus, the dynamic but also simultaneously tight regulation of vascular permeability by endothelial cells is responsible for maintaining homeostasis and, as such, impairments of its underlying mechanisms result in hyperpermeability, leading to the development and progression of various diseases including coronavirus disease 2019 (COVID-19), a newly emerging infectious disease. Recently, increasing numbers of studies have been unveiling the important role of Rap1, a small guanosine 5'-triphosphatase (GTPase) belonging to the Ras superfamily, in the regulation of vascular permeability. Rap1 enhances VE-cadherin-mediated endothelial cell-cell junctions to potentiate vascular barrier functions via dynamic reorganization of the actin cytoskeleton. Importantly, Rap1 signaling activation reportedly improves vascular barrier function in animal models of various diseases associated with vascular hyperpermeability, suggesting that Rap1 might be an ideal target for drugs intended to prevent vascular barrier dysfunction. Here, we describe recent progress in understanding the mechanisms by which Rap1 potentiates VE-cadherin-mediated endothelial cell-cell adhesions and vascular barrier function. We also discuss how alterations in Rap1 signaling are related to vascular barrier dysfunction in diseases such as acute pulmonary injury and malignancies. In addition, we examine the possibility of Rap1 signaling as a target of drugs for treating diseases associated with vascular hyperpermeability.


Subject(s)
Antigens, CD/metabolism , Cadherins/metabolism , Capillary Permeability , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Intercellular Junctions/metabolism , rap1 GTP-Binding Proteins/metabolism , Animals , Humans
11.
Dis Model Mech ; 14(11)2021 11 01.
Article in English | MEDLINE | ID: covidwho-1430507

ABSTRACT

Vascular permeability triggered by inflammation or ischemia promotes edema, exacerbates disease progression and impairs tissue recovery. Vascular endothelial growth factor (VEGF) is a potent inducer of vascular permeability. VEGF plays an integral role in regulating vascular barrier function physiologically and in pathologies, including cancer, stroke, cardiovascular disease, retinal conditions and COVID-19-associated pulmonary edema, sepsis and acute lung injury. Understanding temporal molecular regulation of VEGF-induced vascular permeability will facilitate developing therapeutics to inhibit vascular permeability, while preserving tissue-restorative angiogenesis. Here, we demonstrate that VEGF signals through signal transducer and activator of transcription 3 (STAT3) to promote vascular permeability. We show that genetic STAT3 ablation reduces vascular permeability in STAT3-deficient endothelium of mice and VEGF-inducible zebrafish crossed with CRISPR/Cas9-generated Stat3 knockout zebrafish. Intercellular adhesion molecule 1 (ICAM-1) expression is transcriptionally regulated by STAT3, and VEGF-dependent STAT3 activation is regulated by JAK2. Pyrimethamine, an FDA-approved antimicrobial agent that inhibits STAT3-dependent transcription, substantially reduces VEGF-induced vascular permeability in zebrafish, mouse and human endothelium. Collectively, our findings suggest that VEGF/VEGFR-2/JAK2/STAT3 signaling regulates vascular barrier integrity, and inhibition of STAT3-dependent activity reduces VEGF-induced vascular permeability. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Capillary Permeability , Endothelium, Vascular/metabolism , STAT3 Transcription Factor/genetics , Vascular Endothelial Growth Factor A/metabolism , Animals , CRISPR-Cas Systems , Humans , Intercellular Adhesion Molecule-1/metabolism , Janus Kinase 2/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , STAT3 Transcription Factor/metabolism , Signal Transduction , Zebrafish
12.
Physiol Rep ; 9(5): e14796, 2021 03.
Article in English | MEDLINE | ID: covidwho-1120167

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues to be a world-wide pandemic with overwhelming socioeconomic impact. Since inflammation is one of the major causes of COVID-19 complications, the associated molecular mechanisms have been the focus of many studies to better understand this disease and develop improved treatments for patients contracting SARS-CoV-2. Among these, strong emphasis has been placed on pro-inflammatory cytokines, associating severity of COVID-19 with so-called "cytokine storm." More recently, peptide bradykinin, its dysregulated signaling or "bradykinin storm," has emerged as a primary mechanism to explain COVID-19-related complications. Unfortunately, this important development may not fully capture the main molecular players that underlie the disease severity. To this end, in this focused review, several lines of evidence are provided to suggest that in addition to bradykinin, two closely related vasoactive peptides, substance P and neurotensin, are also likely to drive microvascular permeability and inflammation, and be responsible for development of COVID-19 pathology. Furthermore, based on published experimental observations, it is postulated that in addition to ACE and neprilysin, peptidase neurolysin (Nln) is also likely to contribute to accumulation of bradykinin, substance P and neurotensin, and progression of the disease. In conclusion, it is proposed that "vasoactive peptide storm" may underlie severity of COVID-19 and that simultaneous inhibition of all three peptidergic systems could be therapeutically more advantageous rather than modulation of any single mechanism alone.


Subject(s)
Bradykinin/metabolism , COVID-19/complications , Neprilysin/metabolism , Neurotensin/metabolism , Substance P/metabolism , Animals , COVID-19/metabolism , COVID-19/pathology , Cytokines/metabolism , Humans , Microvessels/metabolism , Microvessels/pathology , Post-Acute COVID-19 Syndrome
13.
Front Med (Lausanne) ; 7: 626796, 2020.
Article in English | MEDLINE | ID: covidwho-1069729

ABSTRACT

Coronavirus disease 19 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first emerged in late 2019 and has since rapidly become a global pandemic. SARS-CoV-2 infection causes damages to the lung and other organs. The clinical manifestations of COVID-19 range widely from asymptomatic infection, mild respiratory illness to severe pneumonia with respiratory failure and death. Autopsy studies demonstrate that diffuse alveolar damage, inflammatory cell infiltration, edema, proteinaceous exudates, and vascular thromboembolism in the lung as well as extrapulmonary injuries in other organs represent key pathological findings. Herein, we hypothesize that GPR4 plays an integral role in COVID-19 pathophysiology and is a potential therapeutic target for the treatment of COVID-19. GPR4 is a pro-inflammatory G protein-coupled receptor (GPCR) highly expressed in vascular endothelial cells and serves as a "gatekeeper" to regulate endothelium-blood cell interaction and leukocyte infiltration. GPR4 also regulates vascular permeability and tissue edema under inflammatory conditions. Therefore, we hypothesize that GPR4 antagonism can potentially be exploited to mitigate the hyper-inflammatory response, vessel hyper-permeability, pulmonary edema, exudate formation, vascular thromboembolism and tissue injury associated with COVID-19.

14.
Noncoding RNA ; 7(1)2021 Feb 02.
Article in English | MEDLINE | ID: covidwho-1060055

ABSTRACT

Neuropilin-1 is a transmembrane glycoprotein that has been implicated in several processes including angiogenesis and immunity. Recent evidence has also shown that it is implied in the cellular internalization of the severe acute respiratory syndrome coronavirus (SARS-CoV-2), which causes the coronavirus disease 2019 (COVID-19). We hypothesized that specific microRNAs can target Neuropilin-1. By combining bioinformatic and functional approaches, we identified miR-24 as a regulator of Neuropilin-1 transcription. Since Neuropilin-1 has been shown to play a key role in the endothelium-mediated regulation of the blood-brain barrier, we validated miR-24 as a functional modulator of Neuropilin-1 in human brain microvascular endothelial cells (hBMECs), which are the most suitable cell line for an in vitro blood-brain barrier model.

15.
Antioxidants (Basel) ; 9(12)2020 Dec 03.
Article in English | MEDLINE | ID: covidwho-962750

ABSTRACT

The potential beneficial effects of the antioxidant properties of vitamin C have been investigated in a number of pathological conditions. In this review, we assess both clinical and preclinical studies evaluating the role of vitamin C in cardiac and vascular disorders, including coronary heart disease, heart failure, hypertension, and cerebrovascular diseases. Pitfalls and controversies in investigations on vitamin C and cardiovascular disorders are also discussed.

16.
Free Radic Biol Med ; 161: 15-22, 2020 12.
Article in English | MEDLINE | ID: covidwho-816474

ABSTRACT

Amelioration of immune overactivity during sepsis is key to restoring hemodynamics, microvascular blood flow, and tissue oxygenation, and in preventing multi-organ dysfunction syndrome. The systemic inflammatory response syndrome that results from sepsis ultimately leads to degradation of the endothelial glycocalyx and subsequently increased vascular leakage. Current fluid resuscitation techniques only transiently improve outcomes in sepsis, and can cause edema. Nitric oxide (NO) treatment for sepsis has shown promise in the past, but implementation is difficult due to the challenges associated with delivery and the transient nature of NO. To address this, we tested the anti-inflammatory efficacy of sustained delivery of exogenous NO using i.v. infused NO releasing nanoparticles (NO-np). The impact of NO-np on microhemodynamics and immune response in a lipopolysaccharide (LPS) induced endotoxemia mouse model was evaluated. NO-np treatment significantly attenuated the pro-inflammatory response by promoting M2 macrophage repolarization, which reduced the presence of pro-inflammatory cytokines in the serum and slowed vascular extravasation. Combined, this resulted in significantly improved microvascular blood flow and 72-h survival of animals treated with NO-np. The results from this study suggest that sustained supplementation of endogenous NO ameliorates and may prevent the morbidities of acute systemic inflammatory conditions. Given that endothelial dysfunction is a common denominator in many acute inflammatory conditions, it is likely that NO enhancement strategies may be useful for the treatment of sepsis and other acute inflammatory insults that trigger severe systemic pro-inflammatory responses and often result in a cytokine storm, as seen in COVID-19.


Subject(s)
Endotoxemia/drug therapy , Nitric Oxide/therapeutic use , Sepsis/drug therapy , Systemic Inflammatory Response Syndrome/drug therapy , Animals , Blood Circulation/drug effects , COVID-19/pathology , Cytokine Release Syndrome/prevention & control , Cytokines/blood , Delayed-Action Preparations/therapeutic use , Disease Models, Animal , Hemodynamics/drug effects , Lipopolysaccharides/toxicity , Macrophages/immunology , Male , Mice , Mice, Inbred BALB C , Nanoparticles/therapeutic use , SARS-CoV-2/immunology
SELECTION OF CITATIONS
SEARCH DETAIL